

To take in an audio file as input and return the **Genre** of the inputted audio from a predetermined list of 10 genres

Methodology

- Use GTZAN Genre Collection Dataset • Contains 10 genres with 100 labeled songs for each genre
- Run all 1000 songs on an extraction script based on Librosa to extract 37 features for each song and normalize the data.
- Run a k-nearest neighbors algorithm (KNN) to train the classification model.
- 80 songs from each genre used for training the model
- 20 songs from each genre used for testing the model
- Use the trained model to predict the classification on the samples selected.

Analysis

We have an overall hit rate of 54.5% with each genre's hit rate ranging from 5% to 90%.

Blues songs are most often classified incorrectly into disco and rock.

- Hiphop songs are most often classified incorrectly into disco and pop.
- Jazz songs are most often classified incorrectly into country, disco and reggae.
- **Reggae** songs are most often classified incorrectly into disco.
- **Rock** songs are most often classified incorrectly into country, disco and reggae

Nick David

Genre Classifier

EECS 352-Machine Perception of Music Professor Bryan Pardo www.WhatGenre.Me

Results

KNN with 37 Features (800 songs to train, 200 to test, evenly split by genre vs 800 to train, and testing on same 800)

KNN with 800 to train, 200 to test with 37 features and 11 features

nicholasdavid2019@u.northwestern.edu

Subsequent Testing

We run the 800 songs and test on the 800 songs to see if there is a discrepancy in the setup of the feature vector used. The result shows that the overall hit rate rises to 60%.

Hypothesis: we have too many features that potentially caused interference and a <u>dampening effect when KNN is running the</u> classification.

We pick 11 features instead of 37 based on its correlation with the standard deviation and mean by genre. It shows us that there is a marginal improvement in overall hit rate.

final model. • "Fewer Features". We can perform more statistical analysis and find features that correlated well with each other.

• "More Features". We can get more features that correspond to more highlevel feature groups such as rhythm and

distribution on the feature vector will give us better results.

a bigger library to train our algorithm, it might be able to achieve better results. definition of the genres. Some genres are outdated, some are sub-genres of another. on humans, and compare the accuracies of human identification vs computer identification.

• Capacity of the training data set. If we use • The defined genres. We could make better • Comparison to Humans. Test our data set

yichunli2019@u.northwestern.edu zilunyu2019@u.northwesternedORMICK SCHOOL OF Northwestern ENGINEERING

Conclusion

We use the 11-feature vector as the

pitch. A more even weight on the

Yichun Li Zilun Yu

